Applied Mathematical Sciences Ser.: Multiple Scale and Singular Perturbation Methods by J. D. Cole and J. Kevorkian (1996, Hardcover)

AlibrisBooks (463198)
98.6% positive feedback
Price:
$220.54
Free shipping
Estimated delivery Thu, Aug 21 - Tue, Aug 26
Returns:
30 days returns. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Condition:
Brand New
New Hard cover

About this product

Product Identifiers

PublisherSpringer New York
ISBN-100387942025
ISBN-139780387942025
eBay Product ID (ePID)153223

Product Key Features

Number of PagesVIII, 634 Pages
Publication NameMultiple Scale and Singular Perturbation Methods
LanguageEnglish
Publication Year1996
SubjectPhysics / Quantum Theory, Applied, Physics / Mathematical & Computational, Mathematical Analysis
TypeTextbook
AuthorJ. D. Cole, J. Kevorkian
Subject AreaMathematics, Science
SeriesApplied Mathematical Sciences Ser.
FormatHardcover

Dimensions

Item Height0.6 in
Item Weight84 Oz
Item Length9.2 in
Item Width6.1 in

Additional Product Features

Intended AudienceScholarly & Professional
LCCN95-049951
Dewey Edition20
Series Volume Number114
Number of Volumes1 vol.
IllustratedYes
Dewey Decimal510 s
Table Of Content1. Introduction.- 1.1. Order Symbols, Uniformity.- 1.2. Asymptotic Expansion of a Given Function.- 1.3. Regular Expansions for Ordinary and Partial Differential Equations.- References.- 2. Limit Process Expansions for Ordinary Differential Equations.- 2.1. The Linear Oscillator.- 2.2. Linear Singular Perturbation Problems with Variable Coefficients.- 2.3. Model Nonlinear Example for Singular Perturbations.- 2.4. Singular Boundary Problems.- 2.5. Higher-Order Example: Beam String.- References.- 3. Limit Process Expansions for Partial Differential Equations.- 3.1. Limit Process Expansions for Second-Order Partial Differential Equations.- 3.2. Boundary-Layer Theory in Viscous, Incompressible Flow.- 3.3. Singular Boundary Problems.- References.- 4. The Method of Multiple Scales for Ordinary Differential Equations.- 4.1. Method of Strained Coordinates for Periodic Solutions.- 4.2. Two Scale Expansions for the Weakly Nonlinear Autonomous Oscillator.- 4.3. Multiple-Scale Expansions for General Weakly Nonlinear Oscillators.- 4.4. Two-Scale Expansions for Strictly Nonlinear Oscillators.- 4.5. Multiple-Scale Expansions for Systems of First-Order Equations in Standard Form.- References.- 5. Near-Identity Averaging Transformations: Transient and Sustained Resonance.- 5.1. General Systems in Standard Form: Nonresonant Solutions.- 5.2. Hamiltonian System in Standard Form; Nonresonant Solutions.- 5.3. Order Reduction and Global Adiabatic Invariants for Solutions in Resonance.- 5.4. Prescribed Frequency Variations, Transient Resonance.- 5.5. Frequencies that Depend on the Actions, Transient or Sustained Resonance.- References.- 6. Multiple-Scale Expansions for Partial Differential Equations.- 6.1. Nearly Periodic Waves.- 6.2. Weakly Nonlinear Conservation Laws.- 6.3. Multiple-Scale Homogenization.- References.
SynopsisThis book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer­ Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter., This book is a revised and updated version, including a substantial portion of new material, of the authors' widely acclaimed earlier text "Perturbation Methods in Applied Mathematics". A new chapter dealing with regular expansions has been added, the discussion of layer-type singular perturbations has been revised, and the coverage of multiple scale and averaging methods has been significantly expanded to reflect recent advances and viewpoints. The result is a comprehensive account of the various perturbation techniques currently used in the sciences and engineering, and is suitable for a graduate text as well as a reference work on the subject., This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer- Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.
LC Classification NumberQA299.6-433

All listings for this product

Buy It Now
Any Condition
New
Pre-owned
No ratings or reviews yet
Be the first to write a review