Accelerating MATLAB with GPU Computing : A Primer with Examples by Youngmin Kim and Jung W. Suh (2013, Trade Paperback)

ZUBER (286012)
98.4% positive feedback
Price:
$65.95
Free delivery in 2-5 days - Arrives by Thanksgiving
Get it between Fri, Nov 14 and Tue, Nov 18
Returns:
30 days returns. Seller pays for return shipping.
Condition:
Good
ACCELERATING MATLAB WITH GPU COMPUTING: A PRIMER WITH EXAMPLES By Jung W. Suh & Youngmin Kim.

About this product

Product Identifiers

PublisherElsevier Science & Technology
ISBN-100124080804
ISBN-139780124080805
eBay Product ID (ePID)167797496

Product Key Features

Number of Pages258 Pages
Publication NameAccelerating Matlab with GPU Computing : a Primer with Examples
LanguageEnglish
Publication Year2013
SubjectProgramming Languages / General, Computer Graphics, Systems Architecture / Distributed Systems & Computing, Mathematical & Statistical Software, Numerical Analysis
TypeTextbook
AuthorYoungmin Kim, Jung W. Suh
Subject AreaMathematics, Computers
FormatTrade Paperback

Dimensions

Item Height0.3 in
Item Weight14.4 Oz
Item Length9 in
Item Width6 in

Additional Product Features

Intended AudienceScholarly & Professional
LCCN2014-453529
Reviews"Suh and Kim show graduate students and researchers in engineering, science, and technology how to use a graphics processing unit (GPU) and the NVIDIA company's Compute Unified Device Architecture (CUDA) to process huge amounts of data without losing the many benefits of MATLAB. Readers are assumed to have at least some experience programming MATLAB, but not sufficient background in programming or computer architecture for parallelization."-- ProtoView.com, February 2014, " This truly is a practical primer. It is well written and delivers what it promises. Its main contribution is that it will assist "naive? programmers in advancing their code optimization capabilities for graphics processing units (GPUs) without any agonizing pain ."-- Computing Reviews, July 2 2014 "Suh and Kim show graduate students and researchers in engineering, science, and technology how to use a graphics processing unit (GPU) and the NVIDIA company's Compute Unified Device Architecture (CUDA) to process huge amounts of data without losing the many benefits of MATLAB. Readers are assumed to have at least some experience programming MATLAB, but not sufficient background in programming or computer architecture for parallelization."-- ProtoView.com, February 2014
Dewey Edition23
IllustratedYes
Dewey Decimal518.0
Table Of ContentPreface1. Accelerating MATLAB without GPU 2. Configurations for MATLAB and CUDA 3. Optimization Planning through Profiling4. CUDA coding with C-MEX5. MATLAB with Parallel Computing Toolbox6. Using CUDA-Accelerated Libraries 7. Example in Computer Graphics: 3D Surface Reconstruction using Marching Cubes 8. Example in 3D Image Processing: Atlas-based SegmentationAPPENDIX A.1 Download and install CUDA library A.2 Installing NVIDIA Nsight into Visual Studio
SynopsisBeyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. This often demands that MATLAB codes run faster by leveraging the distributed parallelism of Graphics Processing Units (GPUs). While MATLAB successfully provides high-level functions as a simulation tool for rapid prototyping, the underlying details and knowledge needed for utilizing GPUs make MATLAB users hesitate to step into it. Accelerating MATLAB with GPUs offers a primer on bridging this gap. Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, it then guides users through advanced topics such as CUDA libraries. The authors share their experience developing algorithms using MATLAB, C++ and GPUs for huge datasets, modifying MATLAB codes to better utilize the computational power of GPUs, and integrating them into commercial software products. Throughout the book, they demonstrate many example codes that can be used as templates of C-MEX and CUDA codes for readers' projects. Download example codes from the publisher's website: http://booksite.elsevier.com/9780124080805/, Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. This often demands that MATLAB codes run faster by leveraging the distributed parallelism of Graphics Processing Units (GPUs). While MATLAB successfully provides high-level functions as a simulation tool for rapid prototyping, the underlying details and knowledge needed for utilizing GPUs make MATLAB users hesitate to step into it. Accelerating MATLAB with GPUs offers a primer on bridging this gap. Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, it then guides users through advanced topics such as CUDA libraries. The authors share their experience developing algorithms using MATLAB, C++ and GPUs for huge datasets, modifying MATLAB codes to better utilize the computational power of GPUs, and integrating them into commercial software products. Throughout the book, they demonstrate many example codes that can be used as templates of C-MEX and CUDA codes for readers' projects. Download example codes from the publisher's website: http: //booksite.elsevier.com/9780124080805/ Shows how to accelerate MATLAB codes through the GPU for parallel processing, with minimal hardware knowledge Explains the related background on hardware, architecture and programming for ease of use Provides simple worked examples of MATLAB and CUDA C codes as well as templates that can be reused in real-world projects, Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. This often demands that MATLAB codes run faster by leveraging the distributed parallelism of Graphics Processing Units (GPUs). While MATLAB successfully provides high-level functions as a simulation tool for rapid prototyping, the underlying details and knowledge needed for utilizing GPUs make MATLAB users hesitate to step into it. Accelerating MATLAB with GPUs offers a primer on bridging this gap. Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, it then guides users through advanced topics such as CUDA libraries. The authors share their experience developing algorithms using MATLAB, C++ and GPUs for huge datasets, modifying MATLAB codes to better utilize the computational power of GPUs, and integrating them into commercial software products. Throughout the book, they demonstrate many example codes that can be used as templates of C-MEX and CUDA codes for readers' projects. Download example codes from the publisher's website: http: //booksite.elsevier.com/9780124080805/, Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. This often demands that MATLAB codes run faster by leveraging the distributed parallelism of Graphics Processing Units (GPUs). While MATLAB successfully provides high-level functions as a simulation tool for rapid prototyping, the underlying details and knowledge needed for utilizing GPUs make MATLAB users hesitate to step into it. "Accelerating MATLAB with GPUs" offers a primer on bridging this gap. Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, it then guides users through advanced topics such as CUDA libraries. The authors share their experience developing algorithms using MATLAB, C++ and GPUs for huge datasets, modifying MATLAB codes to better utilize the computational power of GPUs, and integrating them into commercial software products. Throughout the book, they demonstrate many example codes that can be used as templates of C-MEX and CUDA codes for readers projects. Shows how to accelerate MATLAB codes through the GPU for parallel processing, with minimal hardware knowledgeExplains the related background on hardware, architecture and programming for ease of useProvides simple worked examples of MATLAB and CUDA C codes as well as templates that can be reused in real-world projects
LC Classification NumberQA297
No ratings or reviews yet
Be the first to write a review