eBay
  • Daily Deals
  • Gift Cards
  • Sell
  • Help & Contact
  • Happy Kwanza

Bidding has ended on this item. The seller has relisted this item or one like this.

 
Ships to:
Worldwide See exclusions
Delivery:
Visit store:
callistodesigns
 
Ships to:
Worldwide See exclusions

Details about  6 Rose Quartz Polished Gemstones Healing Crystals LOT

See original listing
6 Rose Quartz Polished Gemstones Healing Crystals LOT
6-Rose-Quartz-Polished-Gemstones-Healing-Crystals-LOT
Item Sold
Item condition:
--not specified
Ended:
Nov 20, 2011
Winning bid:
US $2.25
3 bids ]
Shipping:
$1.56 Standard Shipping | See details
Item location:
Tucson, AZ, United States

Description

eBay item number:
260893738710
Seller assumes all responsibility for this listing.
Hi there. I am selling this nice lot of 6 polished rose-quartz stones.
LOOK BELOW FOR LARGER PHOTOS!
Each bag of 6 stones weighs an average of 70 carats, which is 14 grams.
The stones range in size from 14 to 27 mm.
  If you have any questions, do not hesitate to ask me.

Have fun bidding, and know that I will ship this out the same day as the payment clears. Thanks so much for visiting my auction and have a great day:>)
There is a wikipedia article about quartz below the photos.



Quartz

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Quartz

Quartz crystal cluster from Tibet
General
Category Silicate mineral
Chemical formula Silica (silicon dioxide, SiO2)
Strunz classification 04.DA.05
Dana classification 75.01.03.01
Crystal symmetry Trigonal 32
Unit cell a = 4.9133 Å, c = 5.4053 Å; Z=3
Identification
Color Colorless through various colors to black
Crystal habit 6-sided prism ending in 6-sided pyramid (typical), drusy, fine-grained to microcrystalline, massive
Crystal system α-quartz: trigonal trapezohedral class 3 2; β-quartz: hexagonal 622[1]
Twinning Common Dauphine law, Brazil law and Japan law
Cleavage {0110} Indistinct
Fracture Conchoidal
Tenacity Brittle
Mohs scale hardness 7 – lower in impure varieties (defining mineral)
Luster Vitreous – waxy to dull when massive
Streak White
Diaphaneity Transparent to nearly opaque
Specific gravity 2.65; variable 2.59–2.63 in impure varieties
Optical properties Uniaxial (+)
Refractive index nω = 1.543–1.545
nε = 1.552–1.554
Birefringence +0.009 (B-G interval)
Pleochroism None
Melting point 1670 °C (β tridymite) 1713 °C (β cristobalite)[1]
Solubility Insoluble at STP; 1 ppmmass at 400 °C and 500 lb/in2 to 2600 ppmmass at 500 °C and 1500 lb/in2[1]
Other characteristics Piezoelectric, pyroelectric, may be triboluminescent, chiral (hence optically active if not racemic)
References [2][3][4][5]

Quartz is the second most abundant mineral in the Earth's continental crust, after feldspar. It is made up of a continuous framework of SiO4 siliconoxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall formula SiO2.

There are many different varieties of quartz, several of which are semi-precious gemstones. Especially in Europe and the Middle East, varieties of quartz have been since antiquity the most commonly used minerals in the making of jewelry and hardstone carvings.

The word "quartz" is derived from the German word "quarz", which was imported from Middle High German, "twarc", which originated in Slavic (cf. Czech tvrdy ("hard"), Polish twardy ("hard"), Russian твёрдый ("hard")), from Old Church Slavonic тврьдъ ("firm"), from Proto-Slavic *tvьrdъ.[6]

Contents

[hide]

Crystal habit

Crystal structure of α-quartz
β-quartz

Quartz belongs to the trigonal crystal system. The ideal crystal shape is a six-sided prism terminating with six-sided pyramids at each end. In nature quartz crystals are often twinned, distorted, or so intergrown with adjacent crystals of quartz or other minerals as to only show part of this shape, or to lack obvious crystal faces altogether and appear massive. Well-formed crystals typically form in a 'bed' that has unconstrained growth into a void, but because the crystals must be attached at the other end to a matrix, only one termination pyramid is present. A quartz geode is such a situation where the void is approximately spherical in shape, lined with a bed of crystals pointing inward.

At surface temperatures and pressures, quartz is the most stable form of silicon dioxide. Quartz will remain stable up to 573 °C at 1 kilobar of pressure. As the pressure increases the temperature at which quartz will lose stability also increases.

Above 1300 °C and at a pressure of approximately 35 kilobars, only β-quartz is stable. The latter is not the same as normal quartz (or α-quartz), low quartz or just quartz. β-quartz has higher symmetry, is less dense and has a slightly lower specific gravity. The conversion, from one solid substance to another solid substance, of quartz to β-quartz is quick, reversible and accompanied with a slight energy absorption. The conversion is so easily accomplished that when a crystal of quartz is heated to β-quartz, cooled back down, heated again to β-quartz, etc., the quartz will be the same as when it started.

The reason that the conversion is so easily accomplished is that the difference between quartz and β-quartz is relatively slight. The bonds between the oxygen and silicon atoms are "kinked" or bent in quartz and are not so "kinked" in β-quartz. At the higher temperatures the atoms move away from each other just enough to allow the bonds to unkink or straighten and produce the higher symmetry. As the temperature is lowered, the atoms close in on each other and the bonds must kink in order to be stable and this lowers the symmetry back down again.

Although all quartz at temperatures lower than 573 °C is low quartz, there are a few examples of crystals that obviously started out as β-quartz. Sometimes these are labeled as β-quartz but are actually examples of pseudomorphic or "falsely shaped" crystals more correctly labeled 'quartz after β-quartz'. These crystals are of higher symmetry than low quartz although low quartz can form similar crystals to them. They are composed of hexagonal dipyramids which are a pair of opposing six sided pyramids and the crystals lack prism faces. Quartz's typical termination is composed of two sets of three rhombic faces that can look like a six sided pyramid.

(Microscopic) crystal structure

α-quartz crystallizes in the trigonal crystal system, space group P3121 and P3221 respectively. β-quartz belongs to the hexagonal system, space group P6221 and P6421, respectively.[7] These spacegroups are truly chiral (they each belong to the 11 enantiomorphous pairs). Both α-quartz and β-quartz are examples of chiral crystal structures composed of achiral building blocks (SiO4 tetrahedra in the present case). The transformation between α- and β-quartz only involves a comparatively minor rotation of the tetrahedra with respect to one another, without change in the way they are linked.

Varieties (according to color)

Pure quartz, traditionally called rock crystal (sometimes called clear quartz), is colorless and transparent (clear) or translucent, and has often been used for hardstone carvings, such as the Lothair Crystal. Common colored varieties include citrine, rose quartz, amethyst, smoky quartz, milky quartz, and others. Quartz goes by an array of different names. The most important distinction between types of quartz is that of macrocrystalline (individual crystals visible to the unaided eye) and the microcrystalline or cryptocrystalline varieties (aggregates of crystals visible only under high magnification). The cryptocrystalline varieties are either translucent or mostly opaque, while the transparent varieties tend to be macrocrystalline. Chalcedony is a cryptocrystalline form of silica consisting of fine intergrowths of both quartz, and its monoclinic polymorph moganite.[8] Other opaque gemstone varieties of quartz, or mixed rocks including quartz, often including contrasting bands or patterns of color, are agate, sard, onyx, carnelian, heliotrope, and jasper.

Citrine

Citrine

Citrine is a variety of quartz whose color ranges from a pale yellow to brown. Natural citrines are rare; most commercial citrines are heat-treated amethysts or smoky quartzes. It is nearly impossible to tell cut citrine from yellow topaz visibly, but they differ in hardness. Citrine has ferric impurities, and is rarely found naturally. Brazil is the leading producer of citrine, with much of its production coming from the state of Rio Grande do Sul. The name is derived from Latin citrina which means "yellow" and is also the origin of the word "citron." Sometimes citrine and amethyst can be found together in the same crystal and is referred to as ametrine.[9]

Citrine is one of three traditional birthstones for the month of November.

Rose quartz

An elephant carved in rose quartz, 4 inches (10 cm) long

Rose quartz is a type of quartz which exhibits a pale pink to rose red hue. The color is usually considered as due to trace amounts of titanium, iron, or manganese, in the massive material. Some rose quartz contains microscopic rutile needles which produces an asterism in transmitted light. Recent X-ray diffraction studies suggest that the color is due to thin microscopic fibers of possibly dumortierite within the massive quartz.[10]

In crystal form (rarely found) it is called pink quartz and its color is thought to be caused by trace amounts of phosphate or aluminium. The color in crystals is apparently photosensitive and subject to fading. The first crystals were found in a pegmatite found near Rumford, Maine, USA, but most crystals on the market come from Minas Gerais, Brazil.[11]

Rose quartz is not popular as a gem – it is generally too clouded by impurities to be suitable for that purpose. Rose quartz is more often carved into figures such as people or hearts. Hearts are commonly found because rose quartz is pink and an affordable mineral.

Amethyst

Amethyst. Magaliesburg, South Africa

Amethyst is a popular form of quartz that ranges from a bright to dark or dull purple color.

Smoky quartz

Smoky quartz

Smoky quartz is a gray, translucent version of quartz. It ranges in clarity from almost complete transparency to a brownish-gray crystal that is almost opaque. Some can also be black.

Milky quartz

Milky quartz sample
Ancient Roman cameo onyx engraved gem of Augustus

Milk quartz or milky quartz may be the most common variety of crystalline quartz and can be found almost anywhere. The white color may be caused by minute fluid inclusions of gas, liquid, or both, trapped during the crystal formation. The cloudiness caused by the inclusions effectively bars its use in most optical and quality gemstone applications.[12]

Varieties (according to microstructure)

Although many of the varietal names historically arose from the color of the mineral, current scientific naming schemes refer primarily to the microstructure of the mineral. Color is a secondary identifier for the cryptocrystalline minerals, although it is a primary identifier for the macrocrystalline varieties. This does not always hold true.

Major varieties of quartz
Chalcedony Cryptocrystalline quartz and moganite mixture. The term is generally only used for white or lightly colored material. Otherwise more specific names are used.
Agate Multi-colored, banded chalcedony, semi-translucent to translucent
Onyx Agate where the bands are straight, parallel and consistent in size.
Jasper Opaque cryptocrystalline quartz, typically red to brown
Aventurine Translucent chalcedony with small inclusions (usually mica) that shimmer.
Tiger's Eye Fibrous gold to red-brown colored quartz, exhibiting chatoyancy.
Rock crystal Clear, colorless
Amethyst Purple, transparent
Citrine Yellow to reddish orange to brown, greenish yellow
Prasiolite Mint green, transparent
Rose quartz Pink, translucent, may display diasterism
Rutilated quartz Contains acicular (needles) inclusions of rutile
Milk quartz White, translucent to opaque, may display diasterism
Smoky quartz Brown to gray, opaque
Carnelian Reddish orange chalcedony, translucent
Dumortierite quartz Contains large amounts of dumortierite crystals

Synthetic and artificial treatments

A synthetic quartz crystal grown by the hydrothermal method, about 19 cm long and weighing about 127 grams

Not all varieties of quartz are naturally occurring. Prasiolite, an olive colored material, is produced by heat treatment; natural prasiolite has also been observed in Lower Silesia in Poland. Although citrine occurs naturally, the majority is the result of heat-treated amethyst. Carnelian is widely heat-treated to deepen its color.

Due to natural quartz being so often twinned, much of the quartz used in industry is synthesized. Large, flawless and untwinned crystals are produced in an autoclave via the hydrothermal process; emeralds are also synthesized in this fashion. While these are still commonly referred to as quartz, the correct term for this material is silicon dioxide.

Occurrence

Quartz is an essential constituent of granite and other felsic igneous rocks. It is very common in sedimentary rocks such as sandstone and shale and is also present in variable amounts as an accessory mineral in most carbonate rocks. It is also a common constituent of schist, gneiss, quartzite and other metamorphic rocks. Because of its resistance to weathering it is very common in stream sediments and in residual soils. Quartz, therefore, occupies the lowest potential to weather in the Goldich dissolution series.

Quartz occurs in hydrothermal veins as gangue along with ore minerals. Large crystals of quartz are found in pegmatites. Well-formed crystals may reach several meters in length and weigh hundreds of kilograms.

Naturally occurring quartz crystals of extremely high purity, necessary for the crucibles and other equipment used for growing silicon wafers in the semiconductor industry, are expensive and rare. A major mining location for high purity quartz is the Spruce Pine Gem Mine in Spruce Pine, North Carolina, United States.[13]

Related silica minerals

Tridymite and cristobalite are high-temperature polymorphs of SiO2 that occur in high-silica volcanic rocks. Coesite is a denser polymorph of quartz found in some meteorite impact sites and in metamorphic rocks formed at pressures greater than those typical of the Earth's crust. Stishovite is a yet denser and higher-pressure polymorph of quartz found in some meteorite impact sites. Lechatelierite is an amorphous silica glass SiO2 which is formed by lightning strikes in quartz sand.

History

Fatimid carved rock crystal (clear quartz) vase, c. 1000
Quartz crystal showing transparency

The word "quartz" comes from the German About this sound Quarz ,[14] which is of Slavic origin (Czech miners called it křemen). Other sources attribute the word's origin to the Saxon word Querkluftertz, meaning cross-vein ore.[15]

Quartz is the most common material identified as the mystical substance maban in Australian Aboriginal mythology. It is found regularly in passage tomb cemeteries in Europe in a burial context, such as Newgrange or Carrowmore in the Republic of Ireland. The Irish word for quartz is grian cloch, which means 'stone of the sun'. Quartz was also used in Prehistoric Ireland, as well as many other countries, for stone tools; both vein quartz and rock crystal were knapped as part of the lithic technology of the prehistoric peoples.[16]

While jade has been since earliest times the most prized semi-precious stone for carving in East Asia and Pre-Columbian America, in Europe and the Middle East the different varieties of quartz were the most commonly used for the various types of jewelry and hardstone carving, including engraved gems and cameo gems, rock crystal vases, and extravagant vessels. The tradition continued to produce objects that were very highly valued until the mid-19th century, when it largely fell from fashion except in jewelry. Cameo technique exploits the bands of color in onyx and other varieties.

Roman naturalist Pliny the Elder believed quartz to be water ice, permanently frozen after great lengths of time. (The word "crystal" comes from the Greek word κρύσταλλος, "ice".) He supported this idea by saying that quartz is found near glaciers in the Alps, but not on volcanic mountains, and that large quartz crystals were fashioned into spheres to cool the hands. He also knew of the ability of quartz to split light into a spectrum. This idea persisted until at least the 17th century.

In the 17th century, Nicolas Steno's study of quartz paved the way for modern crystallography. He discovered that no matter how distorted a quartz crystal, the long prism faces always made a perfect 60° angle.

Charles B. Sawyer invented the commercial quartz crystal manufacturing process in Cleveland, Ohio, United States. This initiated the transition from mined and cut quartz for electrical appliances to manufactured quartz.

Quartz's piezoelectric properties were discovered by Jacques and Pierre Curie in 1880. The quartz oscillator or resonator was first developed by Walter Guyton Cady in 1921.[17] George Washington Pierce designed and patented quartz crystal oscillators in 1923.[18] Warren Marrison created the first quartz oscillator clock based on the work of Cady and Pierce in 1927.[19]

Piezoelectricity

Quartz crystals have piezoelectric properties; they develop an electric potential upon the application of mechanical stress. An early use of this property of quartz crystals was in phonograph pickups. One of the most common piezoelectric uses of quartz today is as a crystal oscillator. The quartz clock is a familiar device using the mineral. The resonant frequency of a quartz crystal oscillator is changed by mechanically loading it, and this principle is used for very accurate measurements of very small mass changes in the quartz crystal microbalance and in thin-film thickness monitors.

Gallery of quartz mineral specimens from around the world



Questions and answers about this item

No questions or answers have been posted about this item.




00000

Place bid

Time left:
Current bid:
(Approximately ##1##)
Shipping:
Import charges:
Your max bid:
Your max bid:
By clicking Confirm bid, you commit to buy this item from the seller if you are the winning bidder.
By clicking Confirm bid, you are committing to buy this item from the seller if you are the winning bidder and have read and agree to the Global Shipping Program terms and conditions - opens in a new window or tab. Import charges previously quoted are subject to change if you increase you maximum bid amount.
Cancel
Loading...
Resume bidding, if the page does not update immediately.
Place bid
Review and confirm your bid
Bid confirmation
d
h
m
s
day
hour
hours
FREE shipping
See item description
(Approximately ##1##)
(Enter ##1## or more)
(Enter more than ##1##)
Your max bid:
Increase max bid
Place bid
Confirm bid
Increase max bid
Cancel
Change bid
Close
, you've been outbid. Don't let it get away - bid again!
, you're the highest bidder on this item. Hope you win it!
, you're the first bidder. Hope you win!
, you're currently the high bidder, but you're close to getting outbid.
, this auction is almost over and you're currently the high bidder.
, you're the high bidder, but the reserve price hasn't been met.
Please enter your bid again.
Please enter a valid number as the bid price.
Enter an amount that is equal or greater than the minimum bid required. This can be found under the bid entry box.
Maximum bids can't be lowered once they're submitted.
This seller requires the buyer to have a PayPal account to purchase this item. Get a PayPal account here .
Your bid is greater than or equal to the Buy It Now price. We recommend you purchase this item via Buy It Now. If you still wish to bid, you may do so below.
Time left:
Current bid:
(approximately ##1##)
Your maximum bid:
(approximately ##1##)
Increase your maximum bid:
By clicking 1 Click Bid, you commit to buy this item from the seller if you're the winning bidder. Learn moreabout 1-click bid - opens in a new window or tab
day
hour
min
sec
days
hours
mins
secs
(approximately ##1##)
Winning bid:
Starting bid:
Close
Congrats! The auction has ended and you're the winner.
The auction has ended, but the reserve price was not met.
Sorry, the auction has ended and you were outbid.
Good news, you're the high bidder.
Sorry, you've been outbid.
You're the high bidder, but the reserve price is not met.
Please enter a higher amount than the current bid.
Maximum bids cannot be lowered once submitted.
Please enter a valid number.